# metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Bis(7-amino-2,4-dimethyl-1,8-naphthyridine)dichloridomanganese(II) methanol disolvate

## Shouwen Jin<sup>a</sup>\* and Daqi Wang<sup>b</sup>

<sup>a</sup>Faculty of Science, ZheJiang Forestry University, Lin'An 311300, People's Republic of China, and <sup>b</sup>Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China Correspondence e-mail: Jinsw@zjfc.edu.cn

Received 29 October 2007; accepted 1 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.047; wR factor = 0.125; data-to-parameter ratio = 15.4.

In the title compound,  $[MnCl_2(C_{10}H_{11}N_3)_2]\cdot 2CH_3OH$ , both naphthyridine ligands coordinate to the Mn<sup>II</sup> ion *via* two N atoms in a bidentate chelating mode. The Mn<sup>II</sup> centre is furthermore coordinated by two Cl ligands to form an octahedral geometry. In addition, there are two methanol molecules in the asymmetric unit. The crystal packing is stabilized by  $O-H\cdots$ Cl,  $N-H\cdots$ O and  $N-H\cdots$ Cl hydrogen bonds.

#### **Related literature**

For related literature, see: Bayer (1979); Gavrilova & Bosnich (2004); Jin *et al.* (2007); Mintert & Sheldrick (1995*a*,*b*); Oskui *et al.* (1999); Oskui & Sheldrick (1999).



## Experimental

#### Crystal data

 $[MnCl_{2}(C_{10}H_{11}N_{3})_{2}] \cdot 2CH_{3}OH$   $M_{r} = 536.36$ Triclinic,  $P\overline{1}$  a = 9.637 (3) Å b = 10.649 (3) Å c = 14.442 (4) Å  $\alpha = 79.178$  (4)°  $\beta = 78.343$  (4)°

#### Data collection

Siemens SMART CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T<sub>min</sub> = 0.753, T<sub>max</sub> = 0.885

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$  $wR(F^2) = 0.125$ S = 1.024597 reflections

Table 1Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | $D-\mathrm{H}$   | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdots A$ |
|-----------------------------|------------------|-------------------------|-------------------------|------------------|
| $O2-H2\cdots Cl1^i$         | 0.82             | 2.35                    | 3.162 (3)               | 169              |
| O1−H1···Cl1 <sup>ii</sup>   | 0.82             | 2.41                    | 3.183 (3)               | 158              |
| $N6-H6B\cdots O1$           | 0.86             | 2.10                    | 2.960 (4)               | 173              |
| $N6-H6A\cdots Cl1$          | 0.86             | 2.55                    | 3.359 (4)               | 158              |
| $N3-H3B\cdots O2^{iii}$     | 0.86             | 2.04                    | 2.895 (4)               | 175              |
| $N3-H3A\cdots$ Cl2          | 0.86             | 2.49                    | 3.318 (4)               | 161              |
| Symmetry codes:             | (i) $-x + 1, -x$ | y + 2, -z + 1;          | (ii) $-x, -y + 2$       | 2, -z + 1; (iii) |

 $\gamma = 65.894 \ (4)^{\circ}$ 

Z = 2

V = 1315.7 (7) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.41 \times 0.22 \times 0.17 \text{ mm}$ 

6933 measured reflections 4597 independent reflections

2867 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

 $\mu = 0.73 \text{ mm}^{-1}$ 

T = 298 (2) K

 $R_{\rm int} = 0.020$ 

298 parameters

 $\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^-$ 

 $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$ 

x - 1, y, z - 1.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996; data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXTL*.

The authors thank Zhejiang Forestry University Science Foundation for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2572).

#### References

- Bayer, J. W. (1979). US Patent 4 169 092.
- Gavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349-383.
- Jin, S. W., Liu, B. & Chen, W. Z. (2007). *Chin. J. Struct. Chem.* **26**, 287–290. Mintert, M. & Sheldrick, W. S. (1995a). *Inorg. Chim. Acta*, **236**, 13–20.
- Mintert, M. & Sheldrick, W. S. (1995b). J. Chem. Soc. Dalton Trans. pp. 2663-2669.

Oskui, B., Mintert, M. & Sheldrick, W. S. (1999). *Inorg. Chim. Acta*, **287**, 72–81. Oskui, B. & Sheldrick, W. S. (1999). *Eur. J. Inorg. Chem.* pp. 1325–1328.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1996). SMART, SAINT and SHELXTL. Siemens Analytical X-ray Instrumnts Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, m3036 [doi:10.1107/S1600536807055262]

## Bis(7-amino-2,4-dimethyl-1,8-naphthyridine)dichloridomanganese(II) methanol disolvate

### S. Jin and D. Wang

#### Comment

Molecular structures and chemical properties of transition metal complexes of 1,8-naphthyridine (napy) and its derivatives have received much attention, because the ligands can link to metals with several coordination modes such as monodentate, chelating bidentate, and dinuclear bridging binding fashion (Gavrilova & Bosnich, 2004). 5,7-dimethyl-1,8-naphthyridin-2-amine are potentially tridentate ligands and are capable of linking two to four metal atoms together to form metal aggregates having metal–metal interactions (Oskui *et al.*, 1999; Mintert & Sheldrick, 1995*a*,b; Oskui & Sheldrick, 1999). The coordination chemistry of 5,7-dimethyl-1,8-naphthyridine-2-amine (*L*) has not been well studied before although a Mn(II) complex ( $Mn_{(L)}2Cl^2$ ) (Bayer, 1979) was once described in a US patent. As an extension of our work (Jin *et al.*, 2007), the title complex ( $Mn_{(L)}2(Cl_{2)}\cdot_2(CH_3O_H)$ ) is reported here.

The complex was obtained as colorless crystals by reacting of manganese chloride tetrahydrate and *L* in methanol. The compound is air stable and light insensitive. The complex does not dissolve in water and common organic solvent. The molecular structure of the compound is shown in Fig. 1. Both of the two *L* coordinate to the metal with two N atoms in a bidentate chelating fashion. Two chloride anions coordinate to the Mn ion to complete its octahedral geometry. The amine group of 5,7-dimethyl-1,8-naphthyridin-2-amine does not show any bonding interaction with the Mn atoms. The Mn—N bond distances range from 2.231 (3) to 2.453 (3) Å. The Mn—Cl bond distances are 2.4166 (14) and 2.4699 (12) Å. The two naphthyridine rings are almost perpendicular to each other.

#### Experimental

All reagents and solvents were used as obtained without further purification. The CHN elemental analyses were performed on a Perkin–Elmer elemental analyzer.

To an methanol solution of manganese chloride tetrahydrate (40 mg, 0.2 mmol) was added *L* (34.8 mg, 0.2 mmol) in 10 ml of methanol. The solution was stirred for a few minutes, then the solution was filtered. After standing the solution at room temperature for several days, colorless block crystals were isolated. Yield: 32.2 mg, 60%. Anal. Calcd. for  $C_{22}H_{30}Cl_2Mn_N6_O2$ : C, 49.22; H, 5.59; N, 15.66. Found: C, 49.17; H, 5.50; N, 15.62.

#### Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with O—H = 0.82 Å, N—H = 0.90 Å and C—H = 0.96 Å and U(H) set to  $1.2U_{eq}(C,N,O)$ .

**Figures** 



Fig. 1. The structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.



## Bis(7-amino-2,4-dimethyl-1,8-naphthyridine)dichloridomanganese(II) methanol disolvate

| Z = 2                                           |
|-------------------------------------------------|
| $F_{000} = 558$                                 |
| $D_{\rm x} = 1.354 {\rm ~Mg~m}^{-3}$            |
| Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| Cell parameters from 1874 reflections           |
| $\theta = 2.4 - 23.2^{\circ}$                   |
| $\mu = 0.73 \text{ mm}^{-1}$                    |
| T = 298 (2) K                                   |
| Block, colourless                               |
| $0.41 \times 0.22 \times 0.17 \text{ mm}$       |
|                                                 |

## Data collection

| Siemens SMART CCD area-detector<br>diffractometer              | 4597 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2867 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.020$                  |
| T = 298(2)  K                                                  | $\theta_{\text{max}} = 25.0^{\circ}$   |
| $\varphi$ and $\omega$ scans                                   | $\theta_{\min} = 1.5^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -9 \rightarrow 11$                |
| $T_{\min} = 0.753, T_{\max} = 0.885$                           | $k = -12 \rightarrow 11$               |
| 6933 measured reflections                                      | $l = -17 \rightarrow 16$               |
|                                                                |                                        |

Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.047$                        | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.125$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0535P)^2 + 0.4067P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| S = 1.02                                               | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| 4597 reflections                                       | $\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$                                 |
| 298 parameters                                         | $\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$                              |
| Primary atom site location: structure-invariant direct | Extinction correction: none                                                         |

#### Special details

methods

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

|     | x             | У            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|---------------|--------------|--------------|---------------------------|
| Mn1 | 0.03600 (6)   | 0.77674 (5)  | 0.25965 (4)  | 0.04575 (19)              |
| Cl1 | 0.05456 (13)  | 0.98490 (10) | 0.29881 (7)  | 0.0636 (3)                |
| Cl2 | -0.24018 (12) | 0.85917 (13) | 0.27296 (7)  | 0.0760 (4)                |
| N1  | 0.2973 (3)    | 0.7055 (3)   | 0.1725 (2)   | 0.0449 (7)                |
| N2  | 0.0861 (3)    | 0.7875 (3)   | 0.10128 (19) | 0.0449 (7)                |
| N3  | -0.1387 (4)   | 0.8679 (4)   | 0.0390 (2)   | 0.0736 (10)               |
| H3A | -0.1879       | 0.8741       | 0.0958       | 0.088*                    |
| H3B | -0.1880       | 0.8911       | -0.0090      | 0.088*                    |
| N4  | 0.0720 (3)    | 0.5423 (3)   | 0.29246 (19) | 0.0434 (7)                |
| N5  | 0.1309 (3)    | 0.6444 (3)   | 0.39243 (19) | 0.0440 (7)                |
| N6  | 0.1863 (4)    | 0.7605 (3)   | 0.4883 (2)   | 0.0711 (10)               |
| H6A | 0.1532        | 0.8348       | 0.4497       | 0.085*                    |
| H6B | 0.2206        | 0.7620       | 0.5385       | 0.085*                    |
| 01  | 0.2760 (4)    | 0.7735 (3)   | 0.6695 (2)   | 0.0863 (10)               |
| H1  | 0.2054        | 0.8466       | 0.6822       | 0.130*                    |
| O2  | 0.7131 (4)    | 0.9445 (4)   | 0.8698 (2)   | 0.0924 (10)               |
| H2  | 0.7655        | 0.9740       | 0.8266       | 0.139*                    |
| C1  | 0.2407 (4)    | 0.7379 (3)   | 0.0889 (2)   | 0.0436 (8)                |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| C2   | 0.0140 (5)  | 0.8224 (4) | 0.0253 (3)  | 0.0544 (10) |
|------|-------------|------------|-------------|-------------|
| C3   | 0.0983 (5)  | 0.8106 (4) | -0.0680 (3) | 0.0621 (11) |
| Н3   | 0.0470      | 0.8367     | -0.1209     | 0.075*      |
| C4   | 0.2517 (5)  | 0.7617 (4) | -0.0791 (3) | 0.0625 (11) |
| H4   | 0.3063      | 0.7539     | -0.1401     | 0.075*      |
| C5   | 0.3329 (5)  | 0.7213 (4) | 0.0003 (2)  | 0.0497 (9)  |
| C6   | 0.4929 (5)  | 0.6667 (4) | -0.0013 (3) | 0.0596 (11) |
| C7   | 0.5471 (5)  | 0.6343 (4) | 0.0835 (3)  | 0.0644 (11) |
| H7   | 0.6526      | 0.5981     | 0.0843      | 0.077*      |
| C8   | 0.4486 (5)  | 0.6537 (4) | 0.1696 (3)  | 0.0554 (10) |
| C9   | 0.6011 (5)  | 0.6424 (5) | -0.0936 (3) | 0.0815 (14) |
| H9A  | 0.6051      | 0.7289     | -0.1251     | 0.122*      |
| H9B  | 0.5650      | 0.6034     | -0.1339     | 0.122*      |
| H9C  | 0.7018      | 0.5796     | -0.0806     | 0.122*      |
| C10  | 0.5090 (5)  | 0.6191 (5) | 0.2626 (3)  | 0.0782 (13) |
| H10A | 0.4275      | 0.6625     | 0.3111      | 0.117*      |
| H10B | 0.5896      | 0.6522     | 0.2572      | 0.117*      |
| H10C | 0.5485      | 0.5205     | 0.2794      | 0.117*      |
| C11  | 0.1292 (4)  | 0.5249 (3) | 0.3733 (2)  | 0.0414 (8)  |
| C12  | 0.1846 (4)  | 0.6429 (4) | 0.4704 (3)  | 0.0502 (9)  |
| C13  | 0.2383 (4)  | 0.5185 (4) | 0.5337 (3)  | 0.0564 (10) |
| H13  | 0.2750      | 0.5189     | 0.5884      | 0.068*      |
| C14  | 0.2361 (4)  | 0.4015 (4) | 0.5147 (3)  | 0.0568 (10) |
| H14  | 0.2713      | 0.3211     | 0.5565      | 0.068*      |
| C15  | 0.1809 (4)  | 0.3981 (4) | 0.4314 (2)  | 0.0485 (9)  |
| C16  | 0.1720 (5)  | 0.2840 (4) | 0.4025 (3)  | 0.0572 (10) |
| C17  | 0.1094 (5)  | 0.3053 (4) | 0.3206 (3)  | 0.0591 (11) |
| H17  | 0.1008      | 0.2313     | 0.3002      | 0.071*      |
| C18  | 0.0586 (4)  | 0.4350 (4) | 0.2675 (3)  | 0.0517 (9)  |
| C19  | 0.2261 (6)  | 0.1429 (4) | 0.4589 (3)  | 0.0798 (14) |
| H19A | 0.3153      | 0.1289     | 0.4859      | 0.120*      |
| H19B | 0.2515      | 0.0732     | 0.4178      | 0.120*      |
| H19C | 0.1461      | 0.1367     | 0.5091      | 0.120*      |
| C20  | -0.0165 (5) | 0.4602 (5) | 0.1806 (3)  | 0.0722 (12) |
| H20A | -0.1079     | 0.4408     | 0.1979      | 0.108*      |
| H20B | 0.0532      | 0.4008     | 0.1346      | 0.108*      |
| H20C | -0.0428     | 0.5552     | 0.1536      | 0.108*      |
| C21  | 0.4129 (6)  | 0.7950 (6) | 0.6425 (4)  | 0.1003 (17) |
| H21A | 0.4127      | 0.8616     | 0.6791      | 0.150*      |
| H21B | 0.4220      | 0.8290     | 0.5760      | 0.150*      |
| H21C | 0.4980      | 0.7091     | 0.6537      | 0.150*      |
| C22  | 0.5636 (6)  | 1.0004 (5) | 0.8526 (5)  | 0.118 (2)   |
| H22A | 0.5028      | 0.9640     | 0.9024      | 0.177*      |
| H22B | 0.5588      | 0.9771     | 0.7926      | 0.177*      |
| H22C | 0.5247      | 1.0993     | 0.8507      | 0.177*      |

| Atomic displacement parameters | $(Å^2)$ |
|--------------------------------|---------|

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Mn1 | 0.0506 (4)  | 0.0454 (3)  | 0.0389 (3)  | -0.0156 (3)  | -0.0108 (2)  | -0.0012 (2)  |
| Cl1 | 0.0821 (8)  | 0.0473 (6)  | 0.0639 (6)  | -0.0256 (5)  | -0.0129 (6)  | -0.0079 (5)  |
| Cl2 | 0.0492 (6)  | 0.1008 (9)  | 0.0613 (7)  | -0.0161 (6)  | -0.0116 (5)  | 0.0040 (6)   |
| N1  | 0.0466 (19) | 0.0405 (17) | 0.0457 (17) | -0.0131 (15) | -0.0121 (14) | -0.0028 (13) |
| N2  | 0.0467 (19) | 0.0462 (18) | 0.0384 (16) | -0.0137 (15) | -0.0107 (14) | -0.0013 (13) |
| N3  | 0.057 (2)   | 0.104 (3)   | 0.051 (2)   | -0.018 (2)   | -0.0218 (18) | -0.0040 (19) |
| N4  | 0.0463 (18) | 0.0482 (18) | 0.0388 (16) | -0.0209 (15) | -0.0084 (14) | -0.0033 (13) |
| N5  | 0.0527 (19) | 0.0428 (17) | 0.0413 (16) | -0.0222 (15) | -0.0124 (14) | -0.0005 (13) |
| N6  | 0.109 (3)   | 0.069 (2)   | 0.055 (2)   | -0.045 (2)   | -0.034 (2)   | -0.0028 (17) |
| 01  | 0.065 (2)   | 0.101 (2)   | 0.080 (2)   | -0.0100 (19) | -0.0094 (17) | -0.0327 (18) |
| 02  | 0.073 (2)   | 0.132 (3)   | 0.074 (2)   | -0.046 (2)   | -0.0337 (18) | 0.0206 (19)  |
| C1  | 0.049 (2)   | 0.0359 (19) | 0.045 (2)   | -0.0161 (17) | -0.0083 (18) | -0.0013 (16) |
| C2  | 0.057 (3)   | 0.050 (2)   | 0.054 (3)   | -0.018 (2)   | -0.015 (2)   | -0.0012 (18) |
| C3  | 0.078 (3)   | 0.068 (3)   | 0.039 (2)   | -0.026 (2)   | -0.016 (2)   | -0.0006 (19) |
| C4  | 0.081 (3)   | 0.063 (3)   | 0.041 (2)   | -0.031 (2)   | 0.007 (2)    | -0.0085 (19) |
| C5  | 0.060 (3)   | 0.044 (2)   | 0.044 (2)   | -0.0191 (19) | -0.007 (2)   | -0.0045 (17) |
| C6  | 0.061 (3)   | 0.047 (2)   | 0.067 (3)   | -0.023 (2)   | 0.004 (2)    | -0.008 (2)   |
| C7  | 0.043 (2)   | 0.066 (3)   | 0.077 (3)   | -0.017 (2)   | -0.002 (2)   | -0.010 (2)   |
| C8  | 0.050 (3)   | 0.050 (2)   | 0.067 (3)   | -0.019 (2)   | -0.017 (2)   | -0.0002 (19) |
| C9  | 0.070 (3)   | 0.084 (3)   | 0.081 (3)   | -0.032 (3)   | 0.024 (3)    | -0.021 (3)   |
| C10 | 0.059 (3)   | 0.092 (3)   | 0.083 (3)   | -0.026 (3)   | -0.032 (2)   | 0.007 (3)    |
| C11 | 0.040 (2)   | 0.044 (2)   | 0.040 (2)   | -0.0179 (17) | -0.0021 (16) | -0.0032 (16) |
| C12 | 0.056 (2)   | 0.056 (2)   | 0.044 (2)   | -0.026 (2)   | -0.0086 (18) | -0.0068 (18) |
| C13 | 0.061 (3)   | 0.068 (3)   | 0.040 (2)   | -0.024 (2)   | -0.0177 (19) | 0.0034 (19)  |
| C14 | 0.056 (3)   | 0.053 (2)   | 0.048 (2)   | -0.014 (2)   | -0.0062 (19) | 0.0090 (18)  |
| C15 | 0.050(2)    | 0.043 (2)   | 0.045 (2)   | -0.0143 (18) | -0.0051 (18) | 0.0002 (17)  |
| C16 | 0.057 (3)   | 0.047 (2)   | 0.061 (3)   | -0.019 (2)   | 0.002 (2)    | -0.0045 (19) |
| C17 | 0.061 (3)   | 0.048 (2)   | 0.071 (3)   | -0.025 (2)   | 0.003 (2)    | -0.018 (2)   |
| C18 | 0.048 (2)   | 0.058 (3)   | 0.054 (2)   | -0.024 (2)   | -0.0019 (18) | -0.0147 (19) |
| C19 | 0.098 (4)   | 0.047 (3)   | 0.088 (3)   | -0.026 (3)   | -0.012 (3)   | 0.002 (2)    |
| C20 | 0.069 (3)   | 0.091 (3)   | 0.072 (3)   | -0.037 (3)   | -0.015 (2)   | -0.025 (2)   |
| C21 | 0.083 (4)   | 0.107 (4)   | 0.108 (4)   | -0.027 (3)   | -0.017 (3)   | -0.023 (3)   |
| C22 | 0.090 (4)   | 0.080 (4)   | 0.190 (7)   | -0.035 (3)   | -0.058 (4)   | 0.014 (4)    |

# Geometric parameters (Å, °)

| 2.231 (3)   | C7—C8                                                                                                                 | 1.395 (5)                                                                                                                                                                        |
|-------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.267 (3)   | С7—Н7                                                                                                                 | 0.9300                                                                                                                                                                           |
| 2.344 (3)   | C8—C10                                                                                                                | 1.495 (5)                                                                                                                                                                        |
| 2.4166 (14) | С9—Н9А                                                                                                                | 0.9600                                                                                                                                                                           |
| 2.453 (3)   | С9—Н9В                                                                                                                | 0.9600                                                                                                                                                                           |
| 2.4699 (12) | С9—Н9С                                                                                                                | 0.9600                                                                                                                                                                           |
| 1.327 (5)   | C10—H10A                                                                                                              | 0.9600                                                                                                                                                                           |
| 1.353 (4)   | C10—H10B                                                                                                              | 0.9600                                                                                                                                                                           |
| 1.331 (4)   | C10—H10C                                                                                                              | 0.9600                                                                                                                                                                           |
|             | 2.231 (3)<br>2.267 (3)<br>2.344 (3)<br>2.4166 (14)<br>2.453 (3)<br>2.4699 (12)<br>1.327 (5)<br>1.353 (4)<br>1.331 (4) | 2.231 (3) C7—C8   2.267 (3) C7—H7   2.344 (3) C8—C10   2.4166 (14) C9—H9A   2.453 (3) C9—H9B   2.4699 (12) C9—H9C   1.327 (5) C10—H10A   1.353 (4) C10—H10B   1.331 (4) C10—H10C |

| N2 C1                     | 1247(4)              | C11 C15           | 1 402 (5) |
|---------------------------|----------------------|-------------------|-----------|
| N2 C2                     | 1.347(4)<br>1.222(5) | C12 = C12         | 1.405(5)  |
| N2 U2A                    | 0.8600               | C12C13            | 1.420(3)  |
| N3—H3A                    | 0.8600               | $C_{13} - C_{14}$ | 1.333 (3) |
| N3—H3B                    | 0.8000               |                   | 0.9300    |
| N4                        | 1.322 (4)            | C14—C15           | 1.422 (5) |
| N4                        | 1.341 (4)            | C14—H14           | 0.9300    |
| N5-C12                    | 1.326 (4)            |                   | 1.396 (5) |
| N5—C11                    | 1.359 (4)            |                   | 1.374 (5) |
| N6-C12                    | 1.332 (4)            | C16—C19           | 1.505 (5) |
| N6—H6A                    | 0.8600               |                   | 1.392 (5) |
| N6—H6B                    | 0.8600               | С17—Н17           | 0.9300    |
| 01                        | 1.396 (5)            | C18—C20           | 1.501 (5) |
| O1—H1                     | 0.8200               | С19—Н19А          | 0.9600    |
| O2—C22                    | 1.371 (5)            | С19—Н19В          | 0.9600    |
| O2—H2                     | 0.8200               | С19—Н19С          | 0.9600    |
| C1—C5                     | 1.398 (5)            | C20—H20A          | 0.9600    |
| C2—C3                     | 1.424 (5)            | С20—Н20В          | 0.9600    |
| C3—C4                     | 1.338 (5)            | С20—Н20С          | 0.9600    |
| С3—Н3                     | 0.9300               | C21—H21A          | 0.9600    |
| C4—C5                     | 1.420 (5)            | C21—H21B          | 0.9600    |
| C4—H4                     | 0.9300               | C21—H21C          | 0.9600    |
| C5—C6                     | 1.405 (5)            | C22—H22A          | 0.9600    |
| C6—C7                     | 1.359 (6)            | C22—H22B          | 0.9600    |
| С6—С9                     | 1.509 (5)            | C22—H22C          | 0.9600    |
| N2—Mn1—N5                 | 140.98 (10)          | С6—С9—Н9В         | 109.5     |
| N2—Mn1—N4                 | 97.82 (10)           | Н9А—С9—Н9В        | 109.5     |
| N5—Mn1—N4                 | 58.08 (9)            | С6—С9—Н9С         | 109.5     |
| N2—Mn1—Cl2                | 97.46 (8)            | Н9А—С9—Н9С        | 109.5     |
| N5—Mn1—Cl2                | 113.38 (8)           | Н9В—С9—Н9С        | 109.5     |
| N4—Mn1—Cl2                | 94.45 (8)            | C8—C10—H10A       | 109.5     |
| N2—Mn1—N1                 | 56.89 (10)           | C8—C10—H10B       | 109.5     |
| N5—Mn1—N1                 | 89.71 (10)           | H10A-C10-H10B     | 109.5     |
| N4—Mn1—N1                 | 88.28 (9)            | C8—C10—H10C       | 109.5     |
| Cl2—Mn1—N1                | 154.31 (8)           | H10A-C10-H10C     | 109.5     |
| N2—Mn1—Cl1                | 105.51 (8)           | H10B-C10-H10C     | 109.5     |
| N5—Mn1—Cl1                | 93.36 (7)            | N4—C11—N5         | 112.1 (3) |
| N4—Mn1—Cl1                | 151.42 (8)           | N4—C11—C15        | 123.8 (3) |
| Cl2—Mn1—Cl1               | 98.59 (5)            | N5-C11-C15        | 124.1 (3) |
| N1—Mn1—Cl1                | 90.77 (7)            | N5-C12-N6         | 118.4 (3) |
| C8—N1—C1                  | 117.8 (3)            | N5-C12-C13        | 120.6 (3) |
| C8—N1—Mn1                 | 151.8 (3)            | N6—C12—C13        | 121.0 (3) |
| C1—N1—Mn1                 | 90.4 (2)             | C14—C13—C12       | 120.3 (3) |
| C2—N2—C1                  | 119.0 (3)            | С14—С13—Н13       | 119.9     |
| C2—N2—Mn1                 | 140.4 (3)            | C12—C13—H13       | 119.9     |
| C1—N2—Mn1                 | 100.6 (2)            | C13—C14—C15       | 120.9 (3) |
| C2—N3—H3A                 | 120.0                | C13—C14—H14       | 119.5     |
| C2—N3—H3B                 | 120.0                | C15—C14—H14       | 119.5     |
| $H_{3A}$ $N_{3}$ $H_{3B}$ | 120.0                | C16—C15—C11       | 117.6 (3) |
| C18—N4—C11                | 118.2 (3)            | C16-C15-C14       | 127.2 (3) |
| 010 117 011               | 110.2 (3)            |                   | 141.4 (3) |

| C18—N4—Mn1    | 148.4 (2)    | C11—C15—C14   | 115.2 (3)  |
|---------------|--------------|---------------|------------|
| C11—N4—Mn1    | 93.44 (19)   | C17—C16—C15   | 117.4 (3)  |
| C12—N5—C11    | 118.8 (3)    | C17—C16—C19   | 120.7 (4)  |
| C12—N5—Mn1    | 144.8 (2)    | C15—C16—C19   | 121.8 (4)  |
| C11—N5—Mn1    | 96.3 (2)     | C16—C17—C18   | 121.6 (3)  |
| C12—N6—H6A    | 120.0        | С16—С17—Н17   | 119.2      |
| C12—N6—H6B    | 120.0        | С18—С17—Н17   | 119.2      |
| H6A—N6—H6B    | 120.0        | N4—C18—C17    | 121.3 (4)  |
| С21—О1—Н1     | 109.5        | N4            | 116.9 (3)  |
| С22—О2—Н2     | 109.5        | C17—C18—C20   | 121.7 (4)  |
| N2—C1—N1      | 112.1 (3)    | C16—C19—H19A  | 109.5      |
| N2—C1—C5      | 124.4 (3)    | С16—С19—Н19В  | 109.5      |
| N1—C1—C5      | 123.5 (3)    | H19A—C19—H19B | 109.5      |
| N2—C2—N3      | 118.2 (4)    | С16—С19—Н19С  | 109.5      |
| N2-C2-C3      | 120.7 (4)    | H19A—C19—H19C | 109.5      |
| N3—C2—C3      | 121.1 (4)    | H19B—C19—H19C | 109.5      |
| C4—C3—C2      | 119.5 (4)    | C18—C20—H20A  | 109.5      |
| С4—С3—Н3      | 120.2        | С18—С20—Н20В  | 109.5      |
| С2—С3—Н3      | 120.2        | H20A—C20—H20B | 109.5      |
| C3—C4—C5      | 121.5 (4)    | C18—C20—H20C  | 109.5      |
| C3—C4—H4      | 119.3        | H20A-C20-H20C | 109.5      |
| С5—С4—Н4      | 119.3        | H20B—C20—H20C | 109.5      |
| C1—C5—C6      | 117.9 (3)    | O1—C21—H21A   | 109.5      |
| C1—C5—C4      | 115.0 (4)    | O1—C21—H21B   | 109.5      |
| C6—C5—C4      | 127.1 (4)    | H21A—C21—H21B | 109.5      |
| C7—C6—C5      | 117.5 (4)    | O1—C21—H21C   | 109.5      |
| С7—С6—С9      | 121.1 (4)    | H21A—C21—H21C | 109.5      |
| C5—C6—C9      | 121.4 (4)    | H21B—C21—H21C | 109.5      |
| C6—C7—C8      | 121.7 (4)    | O2—C22—H22A   | 109.5      |
| С6—С7—Н7      | 119.1        | O2—C22—H22B   | 109.5      |
| С8—С7—Н7      | 119.1        | H22A—C22—H22B | 109.5      |
| N1—C8—C7      | 121.6 (4)    | O2—C22—H22C   | 109.5      |
| N1—C8—C10     | 117.0 (4)    | H22A—C22—H22C | 109.5      |
| C7—C8—C10     | 121.5 (4)    | H22B—C22—H22C | 109.5      |
| С6—С9—Н9А     | 109.5        |               |            |
| N2—Mn1—N1—C8  | -177.8 (5)   | N3—C2—C3—C4   | -178.5 (4) |
| N5—Mn1—N1—C8  | -19.2 (5)    | C2—C3—C4—C5   | -0.1 (6)   |
| N4—Mn1—N1—C8  | -77.3 (5)    | N2—C1—C5—C6   | -179.3 (3) |
| Cl2—Mn1—N1—C8 | -174.0 (4)   | N1-C1-C5-C6   | 0.7 (5)    |
| Cl1—Mn1—N1—C8 | 74.1 (5)     | N2-C1-C5-C4   | 0.2 (5)    |
| N2—Mn1—N1—C1  | -0.35 (18)   | N1—C1—C5—C4   | -179.8 (3) |
| N5—Mn1—N1—C1  | 158.21 (19)  | C3—C4—C5—C1   | -0.5 (5)   |
| N4—Mn1—N1—C1  | 100.13 (19)  | C3—C4—C5—C6   | 178.9 (4)  |
| Cl2—Mn1—N1—C1 | 3.4 (3)      | C1—C5—C6—C7   | -0.3 (5)   |
| Cl1—Mn1—N1—C1 | -108.44 (18) | C4—C5—C6—C7   | -179.7 (4) |
| N5—Mn1—N2—C2  | 143.0 (3)    | C1—C5—C6—C9   | 178.6 (3)  |
| N4            | 95.7 (4)     | C4—C5—C6—C9   | -0.8 (6)   |
| Cl2—Mn1—N2—C2 | 0.2 (4)      | C5—C6—C7—C8   | 0.2 (6)    |
| N1—Mn1—N2—C2  | 178.5 (4)    | C9—C6—C7—C8   | -178.8 (4) |

| Cl1—Mn1—N2—C2  | -100.9 (4)   | C1—N1—C8—C7     | 0.7 (5)    |
|----------------|--------------|-----------------|------------|
| N5—Mn1—N2—C1   | -35.1 (3)    | Mn1—N1—C8—C7    | 177.8 (3)  |
| N4—Mn1—N2—C1   | -82.4 (2)    | C1—N1—C8—C10    | 179.8 (3)  |
| Cl2—Mn1—N2—C1  | -177.99 (19) | Mn1—N1—C8—C10   | -3.1 (7)   |
| N1—Mn1—N2—C1   | 0.36 (18)    | C6—C7—C8—N1     | -0.3 (6)   |
| Cl1—Mn1—N2—C1  | 80.9 (2)     | C6—C7—C8—C10    | -179.4 (4) |
| N2-Mn1-N4-C18  | -35.6 (5)    | C18—N4—C11—N5   | -177.5 (3) |
| N5-Mn1-N4-C18  | 177.5 (5)    | Mn1—N4—C11—N5   | 1.7 (3)    |
| Cl2—Mn1—N4—C18 | 62.6 (5)     | C18—N4—C11—C15  | 2.4 (5)    |
| N1-Mn1-N4-C18  | -91.8 (5)    | Mn1—N4—C11—C15  | -178.4 (3) |
| Cl1—Mn1—N4—C18 | 179.8 (4)    | C12—N5—C11—N4   | 180.0 (3)  |
| N2-Mn1-N4-C11  | 145.8 (2)    | Mn1—N5—C11—N4   | -1.8 (3)   |
| N5—Mn1—N4—C11  | -1.12 (19)   | C12—N5—C11—C15  | 0.1 (5)    |
| Cl2—Mn1—N4—C11 | -115.98 (19) | Mn1—N5—C11—C15  | 178.4 (3)  |
| N1—Mn1—N4—C11  | 89.6 (2)     | C11—N5—C12—N6   | 179.7 (3)  |
| Cl1—Mn1—N4—C11 | 1.2 (3)      | Mn1—N5—C12—N6   | 2.7 (7)    |
| N2—Mn1—N5—C12  | 119.4 (4)    | C11—N5—C12—C13  | -0.6 (5)   |
| N4—Mn1—N5—C12  | 178.5 (5)    | Mn1-N5-C12-C13  | -177.6 (3) |
| Cl2—Mn1—N5—C12 | -101.3 (4)   | N5-C12-C13-C14  | 0.5 (6)    |
| N1—Mn1—N5—C12  | 90.3 (4)     | N6-C12-C13-C14  | -179.8 (4) |
| Cl1—Mn1—N5—C12 | -0.5 (4)     | C12—C13—C14—C15 | 0.1 (6)    |
| N2—Mn1—N5—C11  | -58.0 (3)    | N4-C11-C15-C16  | 0.2 (5)    |
| N4—Mn1—N5—C11  | 1.11 (18)    | N5-C11-C15-C16  | 180.0 (3)  |
| Cl2—Mn1—N5—C11 | 81.3 (2)     | N4-C11-C15-C14  | -179.4 (3) |
| N1—Mn1—N5—C11  | -87.1 (2)    | N5-C11-C15-C14  | 0.4 (5)    |
| Cl1—Mn1—N5—C11 | -177.80 (19) | C13-C14-C15-C16 | 180.0 (4)  |
| C2—N2—C1—N1    | -179.2 (3)   | C13—C14—C15—C11 | -0.5 (5)   |
| Mn1—N2—C1—N1   | -0.6 (3)     | C11-C15-C16-C17 | -1.7 (5)   |
| C2—N2—C1—C5    | 0.8 (5)      | C14—C15—C16—C17 | 177.8 (4)  |
| Mn1—N2—C1—C5   | 179.5 (3)    | C11—C15—C16—C19 | 179.2 (3)  |
| C8—N1—C1—N2    | 179.1 (3)    | C14—C15—C16—C19 | -1.3 (6)   |
| Mn1—N1—C1—N2   | 0.5 (3)      | C15-C16-C17-C18 | 0.9 (6)    |
| C8—N1—C1—C5    | -0.9 (5)     | C19—C16—C17—C18 | 179.9 (4)  |
| Mn1—N1—C1—C5   | -179.5 (3)   | C11—N4—C18—C17  | -3.3 (5)   |
| C1—N2—C2—N3    | 178.2 (3)    | Mn1—N4—C18—C17  | 178.3 (3)  |
| Mn1—N2—C2—N3   | 0.3 (6)      | C11—N4—C18—C20  | 175.6 (3)  |
| C1—N2—C2—C3    | -1.4 (5)     | Mn1—N4—C18—C20  | -2.8 (7)   |
| Mn1—N2—C2—C3   | -179.4 (3)   | C16-C17-C18-N4  | 1.7 (6)    |
| N2—C2—C3—C4    | 1.1 (6)      | C16—C17—C18—C20 | -177.1 (4) |
|                |              |                 |            |

Hydrogen-bond geometry (Å, °)

| D—H···A                    | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|----------------------------|-------------|-------|--------------|---------|
| O2—H2···Cl1 <sup>i</sup>   | 0.82        | 2.35  | 3.162 (3)    | 169     |
| O1—H1…Cl1 <sup>ii</sup>    | 0.82        | 2.41  | 3.183 (3)    | 158     |
| N6—H6B…O1                  | 0.86        | 2.10  | 2.960 (4)    | 173     |
| N6—H6A…Cl1                 | 0.86        | 2.55  | 3.359 (4)    | 158     |
| N3—H3B···O2 <sup>iii</sup> | 0.86        | 2.04  | 2.895 (4)    | 175     |







Fig. 2

